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. SQUARE-ROOT ALGORITHMS FOR THE CONTINUOUS-TIME LINEAR LEAST SQUARES ESTIMATION PROBLEM
M. Morf, B. Lévy and T. Kailath
Information Systems Laboratory
Stanford University e e
Stanford, CA 94305 ;
Abstract f(t) = F(£)%(t) + P(t)HT(t)(y(t) - H(t)%(e)) ,
: AUErERT T 2(0) = 0 (2a)

A simple differential equation for the triangular
square-root of the error covariance of the linear
state estimator is derived. Previous algorithms
involved an antisymmetric matrix in the square-
root differential equation. In the constant
model case, Chandrasekhar-type equations are
shown to constitute a set of fast square-root
algorithms for the derivative of the error vari-
ance. :

Square-root algorithms for the smoothing
problem are presented and as in the discrete case,
an array method for handling continuous square-
roots is developed. This method also yields
very naturally the usual normalizations of
stochastic calculus, suggesting extensions to
more general stochastic equations, even to esti-
mators for nonlinear models. T

I. Introduction

Since a full version of this paper will appear
in [1), we present here only an outline of our
results.

We assyme that we are given a state-space .~
model

x(t) = F(t)x(t) + G(t)u(t)
y(t) = H(t)x(t) + v(t) (1a)

where u(-) and v(-) are white noises with
normalized joint covariance:

‘u(t) I 0
E (ul(s) vi(s)1} = | 9

v(t) 0 IP

§(t-s) (1v)

Here, T denotes the transpose and E the expec-
tation.

Then, x(t), the linear least squares estimate
of x(t) given the observed data

Y: 4 {y(s) , 0 < s <t} can be obtained via the
Kalman filter equation

fTh{s work was supported by the Air Force
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Command, under Contract AF44-620-74-C-0068, and
in part by the National Science Foundation under

.Contract NSF-Eng-75-18952 and the Joint Services
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where P(t) , the covariance of the error of the
state estimate, obeys the Riccati equation

B(t) = F(£)P(t) + P(t)F (t) + G(L)GT(t) -
- P(t)RT (£)H(L)P(L)

P(0) = Ho (2b)

Over the years, the Riccati equation has been
studied in great detail, and as one way to improve
its numerical conditioning, a whole family of
alternative square-root algorithms has been
introduced. In the discrete-case, square-root
algorithms have been studied by Potter [2],

Golub [3], Schmidt [4], Kaminski and Bryson [5],
[6]), Bierman [7], [8), Morf and Kailath [9],
among others.

Continuous-time square-root algorithms have
attracted somewhat less interest (see Andrews
[10], Tapley and Choe [11], Bierman {12}, and
Morf and Kailath [9], Appendix C). Somewhat
surprisingly, all known solutions explicitly
introduce a certain antisymmetric matrix into the
differential equation for the square-roots. In
Section II of this paper, we present a differen-

- tial equation for the triangular square-roots

that does not explicitly contain any such anti-
We show that these matrices

are generators of the.orthogonal transformations
that relate the various square-roots and that a

.particular choice of this matrix will result in

triangular
shall also

square-roots. Among other results, we
discuss the stability of our new
equations, and we shall also present some alterna-
tive forms (such as the information filter forms
for the case of high initial uncertainty of the
state estimate). In passing we also note that
these ideas can also be applied to the Chan-
drasekhar-type algorithms (for constant models).

II. Continuous-time square-root algorithams

If S {s a square-root of P and P(*) is

strictly positive definite, so that we can write
P = S8 where S 1s nonsingular, then the
Riccati equation (2b) can be rewrittem as

Pus§ST+s8Ta(F-%ssTuTh)s sT +
+% 66T s7TST 45 sT(FT - 1T 5 5T) +
+45sslcal. )

This equation is satisfied if the square-root
S obeys the differential equation




S=(F-%SSTH HS+%5GG 8T (4a)
with initfal conditions

- T

$0) =S, . SS =N . (4b)

However, it is well-known that matrix square-
roots are not unique, for if S 1s a square-root,
so is ST , where T 1s any orthonormal matrix.
To study how this non-uniqueness is reflected
into the differential equation, we note first
that any differentiable orthonormal matrix T(t)
can be uniquely characterized by a skew-or-anti-
symetric matrix generator Q@(:) such that

ac) +a’¢) =0 (5a)
and .
: T
T(t) = A(E)T(t) , T(O) T, Toro 1.

(5b)

Therefore, 1f S is the square-root obeying
equation (4) and if
sd = ST (6a)
by differentiation of (6a), we obtain the dif-
ferential equation satisfied by s‘

T.T S S, I |
:7.n (¥ l;sasau ﬂ)s}ﬁ (s,g‘ S + 34GG ).“:a ,
sa(O) - so T, - (6b)

. In this equation, the matrix

A(t) A s(0)a(t)sT(r) is entisymmetric and can
be made arbitrary since Q(t) 1is arbitrary.
Therefore, this establishes that all the square-
roots of P are given by the solutions of the
(.lifferential equation

S = (F - %sTHH)S + (A + %ocT)s~T
S0 =S, , sos: =n )

where A(°) 1is an arbitrary antisymmetric
matrix.

Clearly, the square-root matrix S solution
of (7) depends of thé antisymmetric matrix
A(~) chosen. This dependence gives us an addi-
tional degree of freedom, which can be exploited
in different ways. For example, a difficulty
with formula (7) is that S™! has to be computed
at each integration step. However, Andrews (10]
noted that A(:) could be chosen so as to make
S 1lower triangular, so that sl can be com-
puted more easily. To do this, rewrite (7) as

§=@+sT (8)

vith T & p ssT 4 s(c6T - ssTuTnssT).

Then, $§ can be maintained in lower triangular
form by calculating A such that

(A+PsT) =0
and by inserting this value of A in (8). (Here
[M]_ denotes the strictly upper triangular part

of the matrix M ).
A somewhat more direct approach was discovered

rewritten as .

by Tapley and Choe [11] who noted that (8), when '

Lo s vy e

st _“':'7‘”"

A+T =55 (10)
was giving a lower-times upper-triangular °

factorization of A + I, and thereby were able to

simultaneously compute S (in lower triangular
form) and A .

Actually, it is possible to find a differential
equation for S in lower triangular form that
does not explicitly involve any antisymmetric
matrix in the equation: mu1t1p1¥ (3) on the left
by s"1 and on the right by S~' to obtain

s1$+sTsTan
vhere M2 F+F 4+ 60" - WH -
and ¥os'rs ,G=sl ,fi=B .

Since S 1is lower triangular, s713 1s the
lower triangular part of M and we can identify
(an idea analogous to the Wiener~Hopf technique)

§=sml,, - (63)

> >

Here, [ ] +2 is thel'lwer-triangular part”
operator defined by

0 for 1<}
[ll]+/211 = !’“11 for 1= 3§
for 1<

Uy

for an arbitrax:y matrix U . The'strictly lower-
triangular part'has zero values for 1 = j .
Similarly, [ J_ /2 ° the "upper-triangular part"

operator is defined by
T
wl_, = 0y,

The main advantage of equation (11) over those
of Andrews and Tapley and Choe is that it does

~not involve explicitly any antisymmetric matrix

in the differential equation. Moreover, the
matrices (F , G, H) have a nice interpretation:
these matrices arise in the dynamic model for the
modified state-variable n = S 'x . The signifi-
cance of this choice'of variables is that the
variance of the error © will be I . The
dynamic model for n can be obtained from (1)
and (11) as

f=(F-M n+8u , y=Hn+v (12)

Stability of the equation

Square-root methods have several advantages
over the Riccati equation (2b): for example,

P = 88 15 always non-negative definite, a
property which is not always guaranteed by direct
numerical integration of (26). Furthermore, since
the "condition number" of S is the square-root
of the one for P , P can be computed with
greater accuracy. On the other hand, these
algorithms require a slightly larger amount of
computations, as is shown in Appendix B of [1)
vhere computatfonal aspects are discussed.

It should also be pointed out that the sta-
bility properties of the Riccati equation are
conserved by equation (11): as in [14], assume
that the pair (F,G) (respectively (H,F)) {s
uniformly completely controllable (respectively,

b
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observable) and that S; and S, are two solu-
tions of the square-root equationm (11) correspond-
ing to different initial conditions Sj;p and
'Szo_ duch that 8105}0 =9 >0 and
y “ 830830 = N0 > 0 . ’

In this case, P = SISI and P,= S35; are
positive-definite solutions of the Riccati
equation (2b) and if AP = Py - Pp , it was
proved by Kalman in {14]) that AP(t) + 0 as
t -’ @ -

Now, denote AS = S; ~ Sy , then
AP = 84S . S +S; . AST and by multiplication on

, the left by Syl and on the right by 53T , we
-« obtain

-1 T - o=k
§;4s + 45°S S, AP s, . (13)

Tt e P

2 But S; and S are both lower triangular,
and therefore SilAs is the lower triangular part
of sjlar;T:

s = s [s7lap s7T) (14)

5 Rl | 2 ‘+/2

and since AP(t) + 0 .as t+® and S; and
sj! are bounded for i = 1,2 (Py and Pyl are
proved to be bounded in {14] we can conclude
that AS(t) * 0 as t >,

This indicates that the square-root equation
(11) and the Riccati equation (2b) have the same
stability properties.

Information filter forms

In several instances, for example when Il
(the uncertainty on the initial condition sz))
becomes large, it is more convenient to compute
P-l(t) instead of P(t) . Filters involving

' P-1 or its square-root (P~1l = Q@ QT) have

been called information filters.

In this case, 2 obeys the differential
equation

f = (-FF - % 0af ceNR + (o + WY as)

where £(0)RT(0) = H;l and a 1is an arbitrary
antisymmetric matrix.

Then, instead of computing X , it is more
convenient to compute d = P~1 & with the
information filter

d--F+ccTdh)Td +uly . (16)

Alternatively, we can also propagate fi = a's
via the variance normalized information filter
f=(@-%C0 -%AMA+AY a”n
vhere @2 aloaT ,G=0Tc, i & uo-T,

We have seen in (12) that such a filter arises
naturally in the interpretation of equation (11)
for the triangular square-root S . The informa-
tion filter form of equation (11) is

QT = <[M) +2 ol (18)

}
|
|

vhfre 1 1is the upper triangular square-root of
P- .

Time-Invarfant Systems

A

it 1is known [13] that fast square-root algorithms

e TR

In the constant model case (H, F, G constant),

can be obtained by propagating the square-root of
P(t) instead of the square-root of P(t) . How-
ever our earlier discussion suggests that we
should consider a family of square roots, differ-
ing from each other by orthogonal transformations.

- To see how this can be incorporated let us
review the derivation of the Chandrasekhar equa~
tions. The first step is to exploit the constancy
of the model parameters by differentiating the
Riccati equation (2b) to obtain

P = (F - K(OWP + B(F - K(£)W)T (19)
and therefore P(t) = ¢y(t,0)P(0)¢F(t,0)

where ¢(t,0) 1is the transition matrix associ-
ated to (F - K(t)H) , K(t) = P(t)HT being the
Kalman gain.

Now, consider for simplicity the special case
where N, = 0 (known initial conditions). 1In
this case P(0)= GGT , so that we can factor
P(t) = L(t)LT(t) 4in square-root form, L(t)
being nxa with o = rank GGT < q: the number
of inputs. 3

Then substituting P = LLT in (19), we find
that L(t) obeys the Chandrasekhar-type equations
[13)

L(t) = (F - K(t)H)L(t) ~ L(t)a(t)
. K(t) = L(e)LT(e)HT (20)

where L(0)LT(0) = GGT,.k(0) = HOHT , a(t) being
some ax0 antisymmetric matrix.

In [12]), a(t) = 0 was chosen, however the
introduction of a(t) in (20) can provide some
additional control over the numerical behavior
of the square-root L(t) .

III. Conclusions

In [1], we show that the results of Section II
can be extended to the fixed-point smoothing
problem. Also, continuous-time array methods
similar to those developed in [9] by Morf and
Kailath for the discrete-time case are presented.
This approach yields very naturally the usual
normalizations of stochastic calculus, suggesting
extensions to more general stochastic equations.

In Appendix A of (1], we discuss an alternative
set of variance normalized Chandrasekhar-type
equations that involve only one differential
equation for the square-root of the error ;
covariance; however, the variance normalized state
model parameters have to be cbtained. In
Appendix B, we present operation counts for the
algorithm of Section II and those of Andrews and
Tapley and Choe. The square-root algorithms
involve roughly 15 to 30Z more computations than
the Riccati equation. Our new eqration has the
advantage of giving an explicit differential
equation for the square-root, which is consequently
easier to implement for analog simulation.
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